I would like to know if the collection $\mathcal{S}$ consisting of intervals $[a,b)$ with $a\leq b$, $a,b\in\mathbb{R}$, is a semi-algebra. I'm familiar with the standard definition:
- $\emptyset\in\mathcal{S}$
- $A,B\in\mathcal{S} \Rightarrow A\cap B\in\mathcal{S}$
- $\forall A \in \mathcal{S}: A^\mathrm{c} = \bigcup_{i=1}^n E_i$ with $\{E_1,\ldots,E_n\}\subset \mathcal{S}$, disjoint.
The above mentioned collection does not satisfy the third condition. However, here https://math.byu.edu/~bakker/Math541/Lectures/M541Lec11.pdf I found an alternative definition of semi-algebra with which $\mathcal{S}$ complies (see the example under the definition).
Is this a more general definition of semi-algebra?