Below is a problem from Chapter 22 "Infinite Sequences" of Spivak's Calculus. I've previously asked another question regarding an incorrect attempt at solving item $b$ of this problem. Now I am interested in the solution manual solution.
17.(a) Prove that if $\lim\limits_{n\to\infty} [a_{n+1}-a_n]=l$, then $\lim\limits_{n\to\infty} \frac{a_n}{n}=l$.
(b) Suppose that $f$ is continuous and $\lim\limits_{x\to\infty} [f(x+1)-f(x)]=l$. Prove that
$$\lim\limits_{x\to\infty} \frac{f(x)}{x}=l$$
Hint: Let $a_n$ and $b_n$ be the $\inf$ and $\sup$ of $f$ on $[n,n+1]$.
Here is the solution manual solution to part $(b)$
The hypothesis $\lim\limits_{x\to\infty} [f(x+1)-f(x)]=l$ implies that $a_n$ and $b_n$, the $\inf$ and $\sup$ of $f$ on $[n,n+1]$, satisfy $\lim\limits_{n\to\infty} [a_{n+1}-a_n]=l$ and $\lim\limits_{n\to\infty} [b_{n+1}-b_n]=l$.
So by part $(a)$, we have $\lim\limits_{x\to\infty} a_n/n=\lim\limits_{x\to\infty} b_n/n=l$, which implies that $\lim\limits_{x\to\infty} f(x)/x=l$.
How do we conclude
$$\lim\limits_{n\to\infty} [a_{n+1}-a_n]=l$$
and
$$\lim\limits_{n\to\infty} [b_{n+1}-b_n]=l$$
from
$$\lim\limits_{x\to\infty} [f(x+1)-f(x)]=l$$
?