Let $\phi$ and $\psi$ be two smooth scalar fields:
$$\phi:\mathbb{R}^2\rightarrow\mathbb{R}$$
$$\psi:\mathbb{R}^2\rightarrow\mathbb{R}$$
Consider a closed surface $S$ in $\mathbb{R}^2$ bounded by a contour $C$.
Let the following be the Green's second identity applied to the fields $\phi$ and $\psi$:
$$\intop_{S}\left(\phi\nabla^{2} \psi-\psi\nabla^{2}\phi\right)dS=\oint_{C}\left(\phi\boldsymbol{\nabla}\psi-\psi\boldsymbol{\nabla}\phi\right)\cdot\pmb{n}\;dl$$
- This relation holds if one of the functions maps to complex space $\mathbb{C}$, instead of $\mathbb{R}$? Say, $\psi:\mathbb{R}^2\rightarrow \mathbb{C}$?
- (Stronger) the same relation holds if the two functions map to complex space ($\phi:\mathbb{R}^2\rightarrow \mathbb{C}$ and $\psi:\mathbb{R}^2\rightarrow \mathbb{C}$), instead of $\mathbb{R}$?