A partial fractions argument similar to the one described in this answer: https://math.stackexchange.com/a/891102/154826 would go as follows.
First, we have that $f'(a_j) = \prod_{i \neq j}(a_j - a_i)$, so that we're dealing with the quantity
\begin{align*}
\sum_{j=1}^n \frac{a_j^{n-1}}{f'(a_j)}
= \sum_{j=1}^n \frac{a_j^{n-1}}{\prod_{i\neq j}(a_j - a_i)}.
\end{align*}
Now, consider the rational functionwith corresponding partial fraction decomposition
\begin{equation}
R(x)
= \frac{x^{n-1}}{\prod_{i=1}^n(x - a_i)}
= \sum_{i=1}^n \frac{b_i}{x - a_i},\tag{1}
\end{equation}
where
\begin{align*}
b_j
= \lim_{x \rightarrow a_j}(x - a_j)R(x)
= \frac{a_j^{n-1}}{\prod_{i\neq j}(a_j - a_i)}.
\end{align*}
But now, multiplying both sides of (1) by $x$, we get
\begin{align*}
\frac{x^n}{\prod_{j=1}^n (x - a_j)}
&= \sum_{j=1}^n \frac{x}{x - a_j} b_j.
\end{align*}
Taking $x\rightarrow \infty$ on both sides then yields
\begin{align*}
1
= \sum_{j=1}^n b_j
= \sum_{j=1}^n \frac{a_j^{n-1}}{\prod_{i\neq j}(a_j - a_i)}.
\end{align*}