$SL_2(\bf F_3)$ is generated by $A=\begin{bmatrix} 1\ 1 \\ 0\ 1 \end{bmatrix}$ and $B=\begin{bmatrix} 1\ 0 \\ 1\ 1 \end{bmatrix}$.
I think $GL_2(\bf F_3)$ is generated minimally by $\begin{bmatrix}1 & 0\\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix}2 & 2\\1 & 0\end{bmatrix}.$
I am interested in generating these three elements: $$\begin{bmatrix} 0\ 2 \\ 1\ 1 \end{bmatrix}, \begin{bmatrix} 1\ 0 \\ 1\ 1 \end{bmatrix}, \begin{bmatrix} 1\ 2 \\ 1\ 1 \end{bmatrix}$$ each have absolute value of determinant $1$. How can I use the generators to generate these elements? Is there a systematic procedure?