Prove that for $x,y$ positive integers,
$$\sum_{k=0}^{y-1}(-1)^k\frac{\binom{y-1}{k}}{k+x}=\frac{(x-1)!(y-1)!}{(x+y-1)!}$$
One way is to use the beta-gamma functions relation: http://en.wikipedia.org/wiki/Beta_function
Is there a direct way to calculate the sum?