Assume that $ f\in L^1(\mathbb{R}) $ and $ f $ is continuous at the point $ 0 $. If $ \widehat{f}(\xi)=\int_{\mathbb{R}}f(x)e^{-2\pi ix\xi}dx\geq 0 $ for any $ \xi\in\mathbb{R} $, show that $ \widehat{f}\in L^1(\mathbb{R}) $.
It can be get that $$ \int_{\mathbb{R}}|\widehat{f}(\xi)|d\xi=\int_{\mathbb{R}}\int_{\mathbb{R}}f(x)e^{-2\pi ix\xi}dxd\xi. $$ I do not how to use the condition that $ f $ is continuous at $ 0 $. Can you give me some references or hints?