I want to show the following:
$$\int_{-2}^{2}e!^{-y^{2}}dy<\int_{-2}^{2}e^{-1}dy$$
I already know that the left hand side is equal to :
$$\sqrt{\frac{\pi}{\ln\left(e!\right)}}\operatorname{erf}\left(2\sqrt{\ln\left(e!\right)}\right)$$
And the right hand side is equal to :
$$4/e$$
We can also introduce the function :
$$f\left(x\right)=\sqrt{\frac{\pi}{\ln\left(x!\right)+(x-e)^2}}\operatorname{erf}\left(2\sqrt{\ln\left(x!\right)}\right)-\frac{4e^{\frac{1}{9}}}{x^{\left(1+\frac{1}{9}\right)}}$$
And graphically speaking the function $f(x)$ is negative on $x\in[1,\infty)$
I go further :
Using the formula find on wiki page of the Gamma function we have :
$$g\left(x\right)=\left(x+1-\frac{1}{2}\right)\ln\left(x+1\right)-x-1+\frac{1}{2}\ln\left(2\pi\right)+\frac{1}{12\left(x+1\right)}-\frac{1}{360\left(x+1\right)^{3}}\simeq \ln\left(x!\right)$$
So remains to show for $x\ge 1$ :
$$\sqrt{\frac{\pi}{g\left(x\right)+\left(x-e\right)^{2}}}\cdot\operatorname{erf}\left(2\sqrt{g\left(x\right)}\right)-\frac{4e^{\frac{1}{9}}}{x^{\left(1+\frac{1}{9}\right)}}<0$$
For the error function we have also an expansion find on wiki page but it seems to need too much terms to be practicable .
I'm stuck here
Edit 21/08/2022 :
I wasn’t thinking to that, but a simple approximation for the error function is :
$$\operatorname{erf}(x)\simeq \left(\tanh\left(x^{\frac{4}{3}}\right)\right)^{\frac{2}{3}}$$
So my question is how to compare it and show the inequality by hand without a calculator?