As @Bob Dobbs commented, using
$$\text{sech}(t)=\sum_{n=0}^\infty \frac{E_{2 n}}{(2 n)!} t^{2n}$$ using the exponential integral function
$$\int t^{2n} e^{-\frac{k^2 t^2}{2}}\,dt=-\frac{1}{2} t^{2 n+1} E_{\frac{1}{2}-n}\left(\frac{k^2 t^2}{2}\right)$$
$$\int_0^\infty t^{2n} e^{-\frac{k^2 t^2}{2}}\,dt=2^{n-\frac{1}{2}} k^{-(2 n+1)} \Gamma \left(n+\frac{1}{2}\right)$$
$$H(k)=\frac{1}{2 \sqrt{\pi }}\sum_{n=0}^\infty \frac{2^n\, E_{2 n} \, \Gamma \left(n+\frac{1}{2}\right)}{(2 n)!}\,k^{-2 n}$$ which does not seem to have a closed form even inn terms of special function.
Converting the series expansion into a simple Padé approximant, using $t=\frac 1 {4k ^2}$, a rather good approximation seems to be
$$H(k)\sim\frac 12 -\frac{t \left(4014355439 t^2+768501000 t+26097105\right)}{12729407095
t^3+7448005794 t^2+898986525 t+26097105}$$ which is $O\left(\frac{1}{k^{14}}\right)$
which seems to be decent.
$$\left(
\begin{array}{ccc}
k & \text{approximation} &\text{solution} \\
0.5 & 0.2721144728 & 0.2534350510 \\
1.0 & 0.3718590167 & 0.3706321367 \\
1.5 & 0.4239836019 & 0.4238919207 \\
2.0 & 0.4509710566 & 0.4509710480 \\
2.5 & 0.4661656602 & 0.4661646055 \\
3.0 & 0.4754077398 & 0.4754075871 \\
3.5 & 0.4813910557 & 0.4813910350 \\
4.0 & 0.4854631489 & 0.4854634468 \\
4.5 & 0.4883490124 & 0.4883490641 \\
5.0 & 0.4904633764 & 0.4904633785
\end{array}
\right)$$
For sure, we could do much better using Padé approximants of higher order.
Edit
Consider the coefficient
$$a_n=\frac{2^n\, E_{2 n} \, \Gamma \left(n+\frac{1}{2}\right)}{(2 n)!}$$ which grow extremely fast $(a_{20}\sim 1.03\times 10^{16})$
$$\left|\frac{a_{n+1}}{a_n}\right|=\frac{1}{2} \left|\frac{E_{2 (n+1)}}{(n+1) E_{2 n}}\right|$$ Using the good approximation (see here)
$$E_{2n} \sim (-1)^n 8 \sqrt{\frac{n}{\pi}} \Bigg[\frac {4n}{e \pi} \,\frac{480 n^2+9}{480 n^2-1}\Bigg]^{2n}$$ gives
$$\left|\frac{a_{n+1}}{a_n}\right|=\frac{8 n}{\pi ^2}\left(1+\frac{1}{2 n}+ O\left(\frac{1}{n^6}\right)\right)$$ probably implies that the series is of no use.