I have to prove that, $$\int_0^\infty \frac{\sin(\pi\omega)}{\omega}\cdot \sin(\omega x) \,\textrm{d}\omega = \begin{cases}\frac{\pi \sin (\pi x)}{2} & 0 \leq x \leq \pi \\\\ 0 & x \gt \pi \end{cases}$$
What I can see is it is in the form of Fourier sine integral, How should I do it?
I just compared with Fourier Sine integral
$$f(x) = \int_0^\infty B(\omega) \sin(\omega x) \,d\omega$$
where $$B(\omega) = \frac{2}{\pi} \int_0^\pi\frac{\pi}{2} \sin (\pi t) sin(\omega t) \, dt$$
and see If i can get $$B(\omega) = \frac{\sin (\pi \omega)}{\omega}$$
but on integration it yields,
$$B(\omega) = \frac{1 + \cos (\omega\pi)}{2(1 + \omega)}$$