Interested by What is $\int_0^\infty \ln \left(1-\frac{\sin x}{x} \right) dx $?, so the following integral may have an interesting evaluation:
$$\text{Re}\int_{\Bbb C}\ln\left(\frac{\text{sech}(z)}z-1\right)dz$$ Here is a graph of the integrand. Notice the many vertical and horizontal asymptotes:
Here are some alternate forms: $$\text{Re}\int_\Bbb C\ln\left(\frac{\text{sech}(z)}z-1\right)dz =2 \text{Re}\int_0^\infty \int_{-\infty}^\infty \ln\left(\frac{\text{sech}(x+yi)}{x+yi}-1\right) dxdy =2 \text{Re}\int_{-\infty}^\infty \int_0^\infty \ln\left(\frac{\text{sech}(x+yi)}{x+yi}-1\right) dy dx= 2 \text{Re}\int_0^\infty \int_{-\infty}^\infty \ln(1-(x+y i)\cosh(x+yi)) -\ln((x+yi)\cosh(x+yi))dxdy$$ Although there is a closed form for the indefinite integral, the following one diverges: $$\int_0^\infty\int_{-\infty}^\infty\ln((x+yi)\cosh(x+yi))dxdy$$ Let’s expand the integrand. Since the integration bounds are the entire complex plane, we expand $\text{Re}\ln(x-1)$ with $A=\left\{x,y:\left|\text{Re}\left(\frac{\text{sech}(x+yi)}{x+yi}\right)\right|<1\right\}$, shown here, and $B=\Bbb C-A= \left\{x,y:\left|\text{Re}\left(\frac{\text{sech}(x+yi)}{x+yi}\right)\right|>1\right\}$, shown here
$$2 \text{Re}\int_0^\infty \int_{-\infty}^\infty \ln\left(\frac{\text{sech}(x+yi)}{x+yi}-1\right) dxdy=\text{Re}\iint_B \ln(\text{sech}(x+yi))-\ln(x+yi)-\sum_{n=1}^\infty \frac{(x+yi)^n(e^{2(x+yi)}+1)^n}{2^n e^{n(x+yi)} n} dxdy -2\text{Re} \iint_A\sum_{n=1}^\infty \frac{2^n e^{n(x+yi)}}{n(x+yi)^n(e^{2(x+yi)}+1)^n}dxdy $$
The next step is to expand each $\left(e^{2(x+yi)}+1\right)^n$ with a binomial series, but the integral is very messy at this step, with possible divergence. Surely we can’t do $\int_\Bbb C f(z)dz$ and have a single integral over the entire complex plane. Based on the “conjectures”, the integral may be a rational multiple of $\pi$:
What is $\displaystyle \int_{-\infty}^\infty \int_{-\infty}^\infty \ln\left(\frac{\text{sech}(x+yi)}{x+yi}-1\right)dxdy$?
