In the last two years I have been working with a multi-valued function, which is a modification of Lambert function, $W_q(z)$, https://doi.org/10.1016/j.physa.2019.03.046. In the original problem, R. V. Ramos propose $W_q(z)$ as solution of the problem $$ W_q(z) \cdot \bigg( 1 + (1-q)\cdot W_q(z) \bigg)^\frac{1}{1-q} = z$$
Actually, we have been using Lambert-Tsallis function in many fields, being able to discuss closed-formula of transcendental or polynomial equations, writing then in terms of $W_q$.
For sake of simplicty, instead of use $W_q(z)$ I will use the notation $W_r(z)$ which is the solution of $$ W_r(z) \cdot \bigg( 1 + \frac{W_r(z)}{r} \bigg)^r = z$$
where $r=1/(q-1)$. From now on I will refer to subindex "r" always.
The analytical solution for $x$ is simply written as
$$x = 1 + \frac{W_y(y)}{y}, $$
for $y \in R$.
It must be emphasized that this is an exact solution.
Moreover, there are no approximations involved, like power series or sum of hypergeometric functions with 4 or 5 parameters. There is no need to analyze any differentiations of the original equation, also.
For sake of brevity, I will assume $y>0$, only. Some results and properties are shown and discussed below.
\begin{matrix}
y & W_y(y) & x \\
+0.1000 & (+0.09361 , -0.00000i) & (+1.93607 , -0.00000i) \\
+0.5000 & (+0.37744 , -0.00000i) & (+1.75488 , -0.00000i) \\
+1.0000 & (-1.61803 , -0.00000i) & (-0.61803 , -0.00000i) \\
+1.0000 & (+0.61803 , -0.00000i) & (+1.61803 , -0.00000i) \\
+1.5000 & (-2.25112 , -0.80300i) & (-0.50075 , -0.53534i) \\
+1.5000 & (-2.25112 , +0.80300i) & (-0.50075 , +0.53534i) \\
+1.5000 & (+0.79342 , -0.00000i) & (+1.52895 , -0.00000i) \\
+2.0000 & (-2.46557 , -1.58510i) & (-0.23279 , -0.79255i) \\
+2.0000 & (-2.46557 , +1.58510i) & (-0.23279 , +0.79255i) \\
+2.0000 & (+0.93114 , +0.00000i) & (+1.46557 , +0.00000i) \\
+2.5000 & (-2.45710 , +2.23162i) & (+0.01716 , +0.89265i) \\
+2.5000 & (-2.45710 , -2.23162i) & (+0.01716 , -0.89265i) \\
+2.5000 & (+1.04449 , -0.00000i) & (+1.41780 , -0.00000i) \\
+2.9900 & (-2.34456 , -2.73435i) & (+0.21586 , -0.91450i) \\
+2.9900 & (-2.34456 , +2.73435i) & (+0.21586 , +0.91450i) \\
+2.9900 & (+1.13904 , +0.00000i) & (+1.38095 , +0.00000i) \\
+3.0000 & (-5.45752 , +0.00000i) & (-0.81917 , +0.00000i) \\
+3.0000 & (-2.34166 , -2.74342i) & (+0.21945 , -0.91447i) \\
+3.0000 & (-2.34166 , +2.74342i) & (+0.21945 , +0.91447i) \\
+3.0000 & (+1.14083 , +0.00000i) & (+1.38028 , +0.00000i) \\
\mathbf{\pi} & \textbf{(-5.71693 , -0.32039i)} & \textbf{(-0.81975 , -0.10198i)} \\
\mathbf{\pi} & \textbf{(-5.71693 , +0.32039i)} & \textbf{(-0.81975 , +0.10198i)} \\
\mathbf{\pi} & \textbf{(-2.29873 , -2.86730i)} & \textbf{(+0.26829 , -0.91269i)} \\
\mathbf{\pi} & \textbf{(-2.29873 , +2.86730i)} & \textbf{(+0.26829 , +0.91269i)} \\
\mathbf{\pi} & \textbf{(+1.16569 , -0.00000i)} & \textbf{(+1.37105 , -0.00000i)} \\
+10.0000 & (-18.95314 , +2.76626i) & (-0.89531 , +0.27663i) \\
+10.0000 & (-18.95314 , -2.76626i) & (-0.89531 , -0.27663i) \\
+10.0000 & (-15.88523 , -7.39938i) & (-0.58852 , -0.73994i) \\
+10.0000 & (-15.88523 , +7.39938i) & (-0.58852 , +0.73994i) \\
+10.0000 & (-10.70510 , +9.61676i) & (-0.07051 , +0.96168i) \\
+10.0000 & (-10.70510 , -9.61676i) & (-0.07051 , -0.96168i) \\
+10.0000 & (-5.00000 , +8.66025i) & (+0.50000 , +0.86603i) \\
+10.0000 & (-5.00000 , -8.66025i) & (+0.50000 , -0.86603i) \\
+10.0000 & (-0.37791 , -4.80801i) & (+0.96221 , -0.48080i) \\
+10.0000 & (-0.37791 , +4.80801i) & (+0.96221 , +0.48080i) \\
+10.0000 & (+1.84276 , +0.00000i) & (+1.18428 , +0.00000i) \\
\end{matrix}
When $y>0$, based on the solution written before, I should emphatize:
- When $0<y<1$, there is only one root and it is positive;
- $y_{even} > 1 $ there is a positive root and $y$ complex roots;
- $y_{odd} \geq 1$ there is a positive root, a negative root and $y-1$ complex roots;
- When $y \notin Z$ there are complex values for $x$, but it will also generate one $x>0$
These properties arise due to Lambert-Tsallis function, $W_q(z)$, is a multivalued function.