In Cantor's Lemma, we prove $ \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n $ in the following way:
Let $ \lim_{n \to \infty} \, a_n = L $
$ \lim_{n \to \infty} \, b_n = \lim_{n \to \infty} \, (b_n - a_n) + a_n = \lim_{n \to \infty} \, b_n - a_n + \lim_{n \to \infty} \, a_n = 0 + L = L$
But why can't we just calculate it like this:
$ \lim_{n \to \infty} \, b_n - a_n = 0 \Rightarrow \lim_{n \to \infty}\, b_n - \lim_{n \to \infty} \, a_n = 0 \Rightarrow \lim_{n \to \infty} \, b_n = \lim_{n \to \infty} \, a_n$
The Lemma: Let $ a_n, b_n $ be sequences such that $ \forall n, \, a_n \le a_{n + 1} \le b_{n + 1} \le b_n, \, \lim_{n \to \infty} (b_n - a_n) = 0$
$ a_n $ is bounded above by $ b_1 $ and $ \forall n, a_{n + 1} \ge a_n $. Therefore $ a_n $ is convergent.
$ b_n $ is bounded below by $ a_1 $ and $ \forall n, b_{n + 1} \le b_n $. Therefore, $ b_n $ is convergent.
Let $ \lim_{n \to \infty} a_n = L $
Therefore:
$ \lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = 0 + L = L $