$$I=\int_0^1 \frac{\ln(1-\sqrt{3}t+t^2)}{t} dt=-\frac{13}{72}\pi^2$$
Here is what I tried: $1-\sqrt{3}t+t^2=(z_1-t)(z_2-t)$ where $z_1=e^{\frac{\pi}{6}i}, z_2=e^{-\frac{\pi}{6}i}$
$$I=\int_0^1 \frac{\ln(z_1)+\ln(1-\frac{t}{z_1})}{t}+\frac{\ln(z_2)+\ln(1-\frac{t}{z_2})}{t} dt=\int_0^1 \frac{\ln(1-\frac{t}{z_1})}{t}+\frac{\ln(1-\frac{t}{z_2})}{t} dt$$
where $\ln(z_1)+\ln(z_2)=0$ and $\frac{1}{z_1}=z_2, \frac{1}{z_2}=z_1$
$$I=-\sum_{n=1}^\infty \frac{1}{n} \int_0^1 \frac{1}{t}\left(\frac{t}{z_1}\right)^n+\frac{1}{t}\left(\frac{t}{z_2}\right)^n dt = -\sum_{n=1}^\infty \frac{1}{n}\left( \frac{z_1^n+z_2^n}{n} \right)$$
where $z_1^n+z_2^n=2\cos(\frac{n\pi}{6})$
$$I=-2\sum_{n=1}^\infty \frac{\cos(\frac{n\pi}{6})}{n^2}$$
How to proceed next?