Let $q$ be a prime power. Denote by $\mathbb{F}_{q^m}$ the finite field with $q^m$ elements for any positive integer $m$. Fix a positive integer $r$, and fix $\alpha \in\mathbb{F}_{q^r} $. Prove the trace $T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\alpha)=0$ if and only if there exists $\beta \in \mathbb{F}_{q}$ such that $\alpha=\beta^q-\beta$.
Things I know:
We have that $[\mathbb{F}_{q^r}: \mathbb{F}_{q}]=r$. Then if $d = [\mathbb{F}_{q}(\alpha):\mathbb{F}_{q}]$, we have that $d|r$.
By definition we have $T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\alpha) = \sum_{\sigma} \sigma (\alpha)$.
So for $(\leftarrow)$ of the proof,
$T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\alpha)= T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\beta^q-\beta)=T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\beta^q) - T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\beta)$. We just need to show $T_{\mathbb{F}_{q^r}/ \mathbb{F}_q}(\beta^q)=0$. But I'm stuck on this, as I think I'm missing some facts on trace to show that.
For $(\rightarrow)$ of the proof, I'm not sure how to proceed.
Any help will be appreciated!