Problem:
Find the volume generated when the region bounded by the given curves and line is revolved about
the x-axis.
$$ y = 3x - x^2$$
$$ y = 3x $$
Answer:
Let $V$ be the volume we are trying to find. The first step is to find the points where
$3x - x^2$ and $y = 3x$ intersect.
\begin{align*}
3x - x^2 &= x \\
-x^2 &= 2x \\
x = 0 &\text{ or } x = 2 \\
V &= \int_0^2 \pi \left( (3x - x^2)^2 - x^2 \right) \,\, dx \\
\dfrac{V}{\pi} &= \int_0^2 (3x - x^2)^2 \,\, dx - \int_0^2 x^2 \,\, dx \\
\end{align*}
Now we have two integrals to evaluate.
\begin{align*}
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 (x^2-3x)^2 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 x^4 - 6x^2 + 9 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{x^5}{5} - \dfrac{6x^3}{3} + 9x \Big|_0^2 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - \dfrac{6(8)}{3} + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - 16 + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{42}{5} \\
\end{align*}
For the second integral we have:
\begin{align*}
\int_0^2 x^2 \,\, dx &= \dfrac{x^3}{3} \Big|_0^2 = \dfrac{8}{3} \\
\dfrac{V}{\pi} &= \dfrac{42}{5} - \dfrac{8}{3} = \dfrac{ 3(42) - 5(8)}{15} \\
\dfrac{V}{\pi} &= \dfrac{86 }{15 } \\
V &= \dfrac{86\pi}{15}
\end{align*}
However, the book gets: $ \dfrac{ 56 \pi}{15} $.
Where did I go wrong?
Based upon a comment from John Douma, I realized that I copied the question incorrectly. Here is the revised question with my solution which still has the wrong answer.
Problem:
Find the volume generated when the region bounded by the given curses and line is revolved about
the x-axis.
$$ y = 3x - x^2 $$
$$ y = x $$
Answer:
Let $V$ be the volume we are trying to find. The first step is to find the points where
$3x - x^2$ and $y = 3x$ intersect.
\begin{align*}
3x - x^2 &= x \\
-x^2 &= -2x \\
x = 0 &\text{ or } x = 2 \\
V &= \int_0^2 \pi \left( (3x - x^2)^2 - x^2 \right) \,\, dx \\
\dfrac{V}{\pi} &= \int_0^2 (3x - x^2)^2 \,\, dx - \int_0^2 x^2 \,\, dx \\
\end{align*}
Now we have two integrals to evaluate.
\begin{align*}
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 (x^2-3x)^2 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 x^4 - 6x^2 + 9 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{x^5}{5} - \dfrac{6x^3}{3} + 9x \Big|_0^2 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - \dfrac{6(8)}{3} + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - 16 + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{42}{5} \\
\end{align*}
For the second integral we have:
\begin{align*}
\int_0^2 x^2 \,\, dx &= \dfrac{x^3}{3} \Big|_0^2 = \dfrac{8}{3} \\
\dfrac{V}{\pi} &= \dfrac{42}{5} - \dfrac{8}{3} = \dfrac{ 3(42) - 5(8)}{15} \\
\dfrac{V}{\pi} &= \dfrac{86 }{15 } \\
V &= \dfrac{86\pi}{15}
\end{align*}
However, the book gets: $ \dfrac{ 56 \pi}{15} $.
Where did I go wrong?
Here is an updated answer based upon the comments from DougM.
Answer:
Let $V$ be the volume we are trying to find. The first step is to find the points where
$3x - x^2$ and $y = x$ intersect.
\begin{align*}
3x - x^2 &= x \\
-x^2 &= -2x \\
x = 0 &\text{ or } x = 2 \\
V &= \int_0^2 \pi \left( (3x - x^2)^2 - x^2 \right) \,\, dx \\
\dfrac{V}{\pi} &= \int_0^2 (3x - x^2)^2 \,\, dx - \int_0^2 x^2 \,\, dx \\
\end{align*}
Now we have two integrals to evaluate.
\begin{align*}
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 (x^2-3x)^2 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 x^4 - 6x^3 + 9 \,\, dx \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{x^5}{5} - \dfrac{6x^4}{4} + 9x \Big|_0^2 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - \dfrac{6(16)}{4} + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - 24 + 18 \\
\int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{2}{5} \\
\end{align*}
For the second integral we have:
\begin{align*}
\int_0^2 x^2 \,\, dx &= \dfrac{x^3}{3} \Big|_0^2 = \dfrac{8}{3} \\
\dfrac{V}{\pi} &= \dfrac{2}{5} - \dfrac{8}{3} = \dfrac{ 6 - 24}{15} \\
\dfrac{V}{\pi} &= -\dfrac{18 }{15 } \\
V &= -\dfrac{18\pi}{15}
\end{align*}
This answer is obviously wrong.
The book gets: $ \dfrac{ 56 \pi}{15} $.
Where did I go wrong?
Here is an updated answer based upon the comment from N. F. Taussig. I now have a correct solution.
Answer:
Let $V$ be the volume we are trying to find. The first step is to find the points where $3x - x^2$ and $y = x$ intersect. \begin{align*} 3x - x^2 &= x \\ -x^2 &= 2x \\ x = 0 &\text{ or } x = 2 \\ V &= \int_0^2 \pi \left( (3x - x^2)^2 - x^2 \right) \,\, dx \\ \dfrac{V}{\pi} &= \int_0^2 (3x - x^2)^2 \,\, dx - \int_0^2 x^2 \,\, dx \\ \end{align*} Now we have two integrals to evaluate. \begin{align*} \int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 (x^2-3x)^2 \,\, dx \\ \int_0^2 (3x - x^2)^2 \,\, dx &= \int_0^2 x^4 - 6x^3 + 9x^2 \,\, dx \\ \int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{x^5}{5} - \dfrac{6x^4}{4} + \dfrac{9x^3}{3} \Big|_0^2 \\ \int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - \dfrac{6(16)}{4} + \dfrac{9(8)}{3} \\ \int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} - 24 + 24 \\ \int_0^2 (3x - x^2)^2 \,\, dx &= \dfrac{32}{5} \\ \end{align*} For the second integral we have: \begin{align*} \int_0^2 x^2 \,\, dx &= \dfrac{x^3}{3} \Big|_0^2 = \dfrac{8}{3} \\ \dfrac{V}{\pi} &= \dfrac{32}{5} - \dfrac{8}{3} = \dfrac{ 96 - 40}{15} \\ \dfrac{V}{\pi} &= \dfrac{56 }{15 } \\ V &= \dfrac{56\pi}{15} \end{align*} This answer matches that given in the book.
