Let $H$ be a separable infinite dimensional Hilbert space.
Definition : The spectrum $\sigma(A)$ of $A \in B(H)$, is the set of all $\lambda \in \mathbb{C}$ such that $A - \lambda I$ is not bijective.
It decomposes as follows:
- Point spectrum: $\sigma_{p}(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ not injective} \}$
- Continuous spectrum: $\sigma_{c}(A) = \{\lambda \in \mathbb{C} : A - \lambda I \ \text{ injective with a dense nonclosed range} \}$
- Residual spectrum: $\sigma_{r}(A) = \{\lambda \in \mathbb{C} : A - \lambda I \ \text{ injective with a nondense range} \}$
Definition : Let $H= L^{2}[0,1]$ and $V \in B(H)$ the Volterra operator defined as follows : $$ (V.f)(t)=\int_0^tf(x)dx $$
Some properties of the Volterra operator $V$ :
$V$ is compact, its spectrum $\sigma(V)=\{0\}$, its norm $\Vert V \Vert = 2/\pi $.
$V$ is nonnormal ($VV^{*} \ne V^{*}V$) with spectrum strictly continuous ($\sigma(V) = \sigma_{c}(V)$), see here.
The closed invariant subspaces of $V$ are $L^{2}[a,1]$, with $a \in [0,1]$ see Barria 1981.
The commutant $\{ V \}'$ of $V$ is the strongly closed algebra generated by $V$, see Erdos 1982.
Remark : $\forall \lambda \in \mathbb{C}$, $V_{\lambda} := V+\lambda I \in \{ V \}'$ and $\sigma(V_{\lambda}) = \sigma_{c}(V_{\lambda}) = \{ \lambda \}$
Definition : Let $S=\{\lambda_{1}, ... ,\lambda_{r} \}$ be a finite subset of $\mathbb{C}$ and let $V_{S} \in \{ V \}'$ defined as follows: $$ V_{S} := (V+\lambda_{1} I).(V+\lambda_{2} I)...(V+\lambda_{r} I) $$
Preliminary questions :
- What is the spectrum of $V_{S}$ ( $S$ or $\{ \prod \lambda_{i} \}$ or anything else) ?
- Is it true that $\sigma(V_{S}) = \sigma_{c}(V_{S}) $ ?
Main question :
Does a nontrivial commutant operator of the Volterra operator admits a strictly continuous spectrum (i.e. $\mathbb{C} I \not\ni A \in \{ V \}' \Rightarrow \sigma(A) = \sigma_{c}(A)$) ?