0

I'm trying to prove the second statement of below result, taken from this page of Wikipedia.

enter image description here

In my below proof, I assume $X$ to be Hausdorff. The Hausdorff condition is to ensure that every finite-dimensional Hausdorff t.v.s. is topologically isomorphic to some $\mathbb R^d$. This result is then used in the proof of Lemma 1.

  • Could you have a check on my attempt?

  • Does the theorem hold in case $X$ is non-Hausdorff?


Theorem: Let $A$ be a convex subset of a Hausdorff t.v.s. $X$. If $\dim A < +\infty$ then $\operatorname{aint} (A) = \operatorname{int} (A)$.

Lemma 1: Let $V$ be a $n$-dimensional Hausdorff t.v.s. and $A:=\{x_1, \ldots, x_{n+1}\} \subset V$ affinely independent. Then $\operatorname{int} (\operatorname{conv} A) \neq \emptyset$.

Lemma 2: Let $A$ be a convex subset of a t.v.s. $X$. If $\operatorname{int} (A) \neq \emptyset$, then $\operatorname{aint} (A) = \operatorname{int} (A)$.

Proof: If $\operatorname{aint} (A) = \emptyset$, then we are done. Now consider the case $\operatorname{aint} (A) \neq \emptyset$. WLOG, we assume $0 \in \operatorname{aint} (A)$. For each $x \in X$, there is $t>0$ such that $tx \in A$. Then $A$ contains a basis of $X$, so $X = \operatorname{aff} (A)$. Hence $X$ is finite-dimensional. By Lemma 1, we get $\operatorname{int} (\operatorname{conv} A) \neq \emptyset$. Because $A$ is convex, $\operatorname{conv} A = A$ and thus $\operatorname{int} A \neq \emptyset$. The claim then follows from Lemma 2.

Analyst
  • 6,351

1 Answers1

0

As @freakish pointed in a comment, a counter-example is a t.v.s. $X$ with anti-discrete topology. In this topology, the only open sets are $X$ and $\emptyset$.

Analyst
  • 6,351