Different approach (that I am not quite sure about, but should work): Let $A := \lbrace z \in \mathbb{C}: \mathrm{Re}(z)>1\rbrace$. Let $\Gamma$ be the counting measure on $2^{\mathbb{N}}$. Then, if $s \in A$ and $h \in B$ (where $B$ is a ball around $0$ such that $s+h \in A$), we have
$$
\frac{1}{h}(\xi(s+h)-\xi(s)) = \sum_{n = 1}^\infty \frac{1}{h}\left(\frac{1}{n^sn^h}-\frac{1}{n^s} \right) = \int_{\mathbb{N}} \frac{1}{h}\left(\frac{1}{n^sn^h}-\frac{1}{n^s} \right)~\mathrm{d}\Gamma(n).
$$
Observe:
$$
\frac{1}{\lvert h \rvert}\left \lvert \frac{1}{n^sn^h}-\frac{1}{n^s} \right \rvert = \frac{1}{\lvert n^s\rvert}\left \lvert \frac{1-n^h}{hn^h} \right \rvert
$$
We are interested in whether $\left\lvert \frac{1-n^h}{hn^h} \right \rvert$ is bounded on $B$. The only problem occurs when $h$ approaches $0$. Use l'Hôpital to get
$$
\lim_{h \rightarrow 0} \frac{1-n^h}{hn^h} = \mathrm{Log}(N)
$$
where $\mathrm{Log}$ is the logarothim's principal branch. So $\frac{1-n^h}{hn^h}$ stays bounded by some $C>0$. In total:
$$
\frac{1}{\lvert h \rvert}\left \lvert \frac{1}{n^sn^h}-\frac{1}{n^s} \right \rvert \leq \frac{C}{\lvert n^s \rvert}.
$$
We know that
$$
\int_{\mathbb{N}} \frac{C}{\lvert n^s \rvert}~\mathrm{d}\Gamma(n) < \infty
$$
and thus dominated convergence yields (limit on the inside is just the derivative)
$$
\lim_{h \rightarrow 0, h \in B} \frac{1}{h}(\xi(s+h)-\xi(s)) = \sum_{n = 1}^\infty \lim_{h \rightarrow 0, h \in B} \frac{1}{h}\left(\frac{1}{n^sn^h}-\frac{1}{n^s} = \right)
$$
$$
\sum_{n = 1}^\infty \frac{-\mathrm{Log(n)}}{n^s}.
$$
Please correct me if you have any objections. I am not quite sure, whether my l'Hôpital argument and my derivative in the last step work.