Let $X$ be a Banach space, and $f:\mathbb{C}\to X$ a function from the complex plan $\mathbb{C}$ with values in $X$. I am trying to give meaning to the integral $$\int_C f(\lambda)\,d\lambda.$$ over a contour $C$.
If $X=\mathbb{C}$ we know that $$\int_C f(\lambda)\,d\lambda=\int_\alpha^\beta f(\phi(t))\phi'(t) \,dt.$$ Where $\phi(t)=x(t)+iy(t),\, \alpha\leq t \leq \beta$ is a parametric representation of the curve $C$.