Evaluate the line integral of $f(x,y)=-y+x$ along part of the parabola $y=2(x+1)^2$ from the point $(0,2)$ to the point $(-1,0)$
I need help trying to find a good parameterization for this because what I've done just lands me in a mess.
My work so far:
Let $x=t, y=2(t+1)^2$ $$ \begin{split} r(t) &= \left<t,2(t+1)^2\right>, \quad -1\leq t \leq 0 \\ r'(t) &= \left<1,4(t+1)\right>, \quad -1\leq t \leq 0 \\ \|r'(t)\| &= \sqrt{1+16(t+1)^2} \\ -y+x &= -2(t+1)^2+t\\ &=-2t^2-3t-2\\ \end{split} $$ So we have $$ \int_0^{-1}\left(-2t^2-3t-2\right)\sqrt{1+16(t+1)^2}dt $$
This integral is really ugly. so then I tried a different method: $$ \begin{split} y &= 2(x+1)^2 \\ \frac{dy}{dx} &= 4x+4 \\ dS &= \sqrt{1+(4x+4)^2} dx\\ &=\sqrt{16x^2+32x+17} dx \end{split} $$ So we get $$\int_0^{-1} \left(-2(x+1)^2+x\right)\sqrt{16x^2+32x+17}dx$$
Again, very ugly. Can someone please help me solve this?