Let $(X, \mathcal{A})$ a measurable space and $f:X \to \overline{\mathbb{R}}$, we know that the following conditions are equivalent.
(i) $f$ is measurable.
(ii) $\forall a \in \mathbb{Q}, \hspace{1ex} \{ x \in X \hspace{1ex} | \hspace{1ex} f(x)>a \} \in \mathcal{A}$.
(iii) $\forall a \in \mathbb{Q}, \hspace{1ex} \{ x \in X \hspace{1ex} | \hspace{1ex} f(x) \geq a \} \in \mathcal{A}$.
(iv) $\forall a \in \mathbb{Q}, \hspace{1ex} \{ x \in X \hspace{1ex} | \hspace{1ex} f(x)<a \} \in \mathcal{A}$.
(v) $\forall a \in \mathbb{Q}, \hspace{1ex} \{ x \in X \hspace{1ex} | \hspace{1ex} f(x) \leq a \} \in \mathcal{A}$.
The question is:
Do we have (i) $f$ is measurable $\Longleftrightarrow$ (vi) $\forall a \in \mathbb{K}, \{ x \in X \mid f(x) = a \} \in \mathcal{A},$ where $\mathbb{K}= \mathbb{R}$ or $\mathbb{Q}$? We do have (i) $\Longrightarrow$ (vi), but do we have (vi) $\Longrightarrow$ (i) ?