Problem:
Let $H=L^{2}\left([0,1]\right)$ and $\varphi\in L^{\infty}\left([0,1]\right)$
Defined :
$$T_{\varphi}~~:~H~\to~H$$ $$T_{\varphi}f=\varphi f$$ Prove that $T_{\varphi}$ are bounded and find the $~~\|T_{\varphi}\|$
My attempts :
$\|T_{\varphi}f\|^{2}_{L^{2}}=\displaystyle\int\limits_{0}^{1}|T_{\varphi}f(x)|^{2}dx$
And we have :
$$|T_{\varphi}f(x)|^{2}=|\varphi(x)f(x)|^{2}$$ $$~~~~~~~~~~~~~~~~~\leq\|\varphi\|^{2}_{\infty}|f(x)|^{2}$$
So :
$\|T_{\varphi}f\|^{2}_{L^{2}}\leq\|\varphi\|^{2}_{\infty}\displaystyle\int\limits_{0}^{1}|f(x)|^{2}dx$
$~~~~~~~~~~~~~~\leq\|\varphi\|^{2}_{\infty}\|f\|^{2}$
$$\implies T_{\varphi}\in\mathcal{L}(H)$$ and $\|T_{\varphi}\|\leq~\|\varphi\|_{\infty}$
My problem now with how I find $\|T_{\varphi}\|$
i.e
How I find $f\in~H$ such that $\|f\|_{H}=1~\text{or}\leq 1$ Then give $\|T_{\varphi}f\|_{H}=\|\varphi\|_{\infty}$ ??
I always have problem to calculat norm of operator!!
Thanks