(Completed solution)
Split differently. Observe that you have also $E[|X|] \le K$ by Fatou's lemma.
Fix $\epsilon>0$.
Last assumption on $h$ yields a real number $R \ge 1$ such that $|h(x)| \le \epsilon|x|/K$ whenever $|x| \ge R$.
Then, uniform continuity of the restriction of $h$ on $[-R+1,R+1]$ yields a positive real number $\alpha \le 1$ such that $|h(x)-h(y)| \le \epsilon$ whenever $|x|,|y| \le R$ and $|x-y| \le \alpha$. And it yields also a bound $M = \sup\{|h(x)| : x \in [-R+1,R+1]\}$.
The event $[|X_n-x| > \alpha]$ has small probability. On this event, you use $$|h(X_n)-h(X)| \le |h(X_n)|+|h(X)|$$
and the upper bounds on $|h|$ (one is valid on $[-R-1,R+1]$, the other on is valid out of $(-R,R)$.
On the event $[|X_n-X| \le \alpha]$, since $\alpha<1$, you know that both $X_n$ and $X$ are in $[-R-1,R+1]$ (here you use uniform continuity) or both of them are out of $(-R,R)$ (here, you use the upper bound on $h$).
Let us put the pieces together
\begin{eqnarray*}
|h(X_n)-h(X)|
&\le& \epsilon \mathbf{1}_{[|X_n-X| \le \alpha~;~|X_n| \le R+1~;~|X| \le R+1]} \\
& & \quad + \big(|h(X_n)|+|h(X)|\big)~\mathbf{1}_{[|X_n-X| \le \alpha~;~|X_n| \ge R~;~|X| \ge R]} \\
& & \quad + \big(|h(X_n)|+|h(X)|\big)~\mathbf{1}_{[|X_n-X|>\alpha]} \\
&\le& \epsilon
+ \frac{\epsilon}{K}\big(|X_n|+|X|\big)\mathbf{1}_{[|X_n-X| \le \alpha} \\
& & \quad + \Big(2M+ \frac{\epsilon}{K}(|X_n|+|X|)\Big)~\mathbf{1}_{[|X_n-X| > \alpha]} \\
&\le& \epsilon + \frac{\epsilon}{K}\big(|X_n|+|X|\big)
+ 2M~\mathbf{1}_{[|X_n-X| > \alpha]}
\end{eqnarray*}
Taking expectations yields
$$E[|h(X_n)-h(X)|] \le 3\epsilon + 2MP[|X_n-X| > \alpha].$$
Hence, since $X_n \to X$ in probability,
$$\limsup_{n \to +\infty} E[|h(X_n)-h(X)|] \le 3\epsilon.$$
Since $\epsilon>0$ is arbitrary, the limsup above is $0$, hence $h(X_n) \to h(X)$ in $L^1(P)$.