Let $f(x):=x$ and $g(x):=x^{2}$, then we say that $f=\mathcal{O}(g)$ if there exists $\alpha,x_{0}>0$ such that: $$ |f(x)|\leqslant\alpha|g(x)| $$ for all $x>x_{0}$
My question is if now $f,g\colon \mathbb{R}^{n}\to\mathbb{R}^{n}$, defined by $f(\mathbf{x}):=\mathbf{x}$ and $g(\mathbf{x}):=\mathbf{x}^{2}$ (element-wise squaring) then can we say that:
$f=\mathcal{O}(g)$ if there exists $\alpha>0$ and $\mathbf{x}_{0}$ such that: $$\|f\|_{p}\leqslant \alpha\|g\|_{p}$$ for all $\|\mathbf{x}\|_{p}>\|\mathbf{x}_{0}\|_{p}$?