The convex optimization problem is as follows: \begin{align} \underset{\mathbb{X},\mathbb{Y}\in\mathbb{S}_n^+}{\min}\quad &\operatorname{Tr}(X)+ \operatorname{Tr}\left(D Y \right)\nonumber\\ \text{s.t.}\;\; &AX+XA^T+BB^T\geq 0 \nonumber\\ &\begin{bmatrix} YA+A^\top Y -\gamma I & YB \\ B^\top Y & -I\end{bmatrix} \preceq 0\nonumber\\ &\begin{bmatrix} X&I\\I& Y \end{bmatrix}\geq 0\nonumber \end{align}
I feel at optimality $XY$ might not be equal to I. Any counterexamples