0

$f(x)=e^{-\frac{1}{x^{2}}}$ for $x\neq 0$ and $f(0)=0$. Prove that $f^{(k)}(0)=0$ for all postitive integer $k$.

Problem says "Use L'Hopital's Rule and induction"

Suppose $f^{(n)}(0)=0$

$f^{(n+1)}(x)=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(x+h)-f^{(n)}(x)}{h}$

$f^{(n+1)}(0)=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(h)-f^{(n)}(0)}{h}=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(h)}{h}=\displaystyle \lim_{h \to 0}f^{(n+1)}(h)$

Then how I know $f^{(n+1)}(0)=0$?

0 Answers0