I am considering the series $\sum_{k=1}^{+\infty}\frac{\cos kx}{k^{6/5}}$. Since $\frac{|\cos kx|}{k^{6/5}}\leq \frac{1}{k^{6/5}}$ for all $x\in\mathbb{R}$, the function $f(x)=\sum_{k=1}^{+\infty}\frac{\cos kx}{k^{6/5}}$ is well-defined and continuous on $\mathbb{R}$. Now I want to find the differentiability of $f(x)$. Using the formula $$\sum_{k=1}^{n} \sin(kx)=\frac{\sin\frac{nx}{2}\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}}$$ and Dirichlet test, I shown that the series $\sum_{k=1}^{+\infty}(\frac{\cos kx}{k^{6/5}})'=\sum_{k=1}^{+\infty}\frac{\sin kx}{k^{1/5}}$ uniformly converge on $[0+\epsilon,2\pi-\epsilon]$ for all small $\epsilon>0$. Therefore $f(x)$ is differentiable for all $x\in\mathbb{R}\backslash (2\pi\mathbb{Z})$.
My question: what is the differentiability of $f(x)$ when $x\in 2\pi\mathbb{Z}$?
I guess that $f(x)$ is differentiable at $x=0$. Because if we replace the power $6/5$ by $2$, it can be shown that $f(x)$ is a Bernoulli polynomial. (How to do $\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2}$?)