Let
- $(\Omega,\mathcal A)$ be a measurable space;
- $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A)$ and $$\mathcal F_\infty:=\sigma(\mathcal F_t,t\ge0);$$
- $\tau:\Omega\to[0,\infty]$.
I'm used to the definition $$\mathcal F_\tau:=\left\{A\in\mathcal A:A\cap\left\{\tau\le t\right\}\in\mathcal F_t\text{ for all }t\ge0\right\}.$$ However, I've also seen a different definition: $$\tilde{\mathcal F}_\tau:=\left\{A\in\mathcal F_\infty:A\cap\left\{\tau\le t\right\}\in\mathcal F_t\text{ for all }t\ge0\right\}.$$ Are they really different or do they coincide?
If $A\in\mathcal F_\tau$, we can clearly write $$A=\underbrace{\bigcup_{n\in\mathbb N}\left(A\cap\{\tau\le n\}\right)}_{\in\:\mathcal F_\infty}\cup(A\cap\{\tau=\infty\}).$$ Since $$\{\tau<\infty\}=\bigcup_{n\in\mathbb N}\{\tau\le n\},$$ we know that $$\{\tau=\infty\}=\{\tau<\infty\}^c\in\mathcal F_\infty\tag2;$$ at least if we assume that $\tau$ is an $\mathcal F$-stopping time; which I'm clearly willing to do.
However, it seems like we are only able to conclude $A\cap\{\tau<\infty\}\in\mathcal F_\infty$.