In "Lectures on Symplectic Geometry" by A. C. da Silva (http://www.math.ist.utl.pt/~acannas/Books/lsg.pdf) the author gives the following definition:
$$ \mathcal{L}_{v_t}\omega := \frac{\mathrm d }{\mathrm d t} (\rho_t)^*\omega\big|_{t=0} $$
where $\rho_t$ satisfies $$ \frac{\mathrm d \rho_t}{\mathrm d t} = v_t\circ\rho_t \qquad \text{and} \qquad \rho_0 = \mathrm{id}. $$
I wonder if this actually makes sense. For time-independent vector fields $v_t=v$ it totally does, but in the time dependent case I have the following objections:
- The right-hand side of the definition of $\mathcal{L}_{v_t}$ does not use the parameter $t$. Or is the $t$ in the left-hand side just to denote that we have a time-dependent vector field? But on page 40 the author uses the Cartan formula $$ \mathcal{L}_{v_t}\omega = i_{v_t}\mathrm{d\omega} + \mathrm{d}i_{v_t}\omega $$ where the right-hand side certainly depends on the parameter $t$.
- The formula $$ \frac{\mathrm d}{\mathrm dt}\rho_t^*\omega = \rho_t^*\mathcal{L}_{v_t}\omega$$ given on page 36 seems to be wrong when you use the definition of $\mathcal{L}_{v_t}$ given above.
For me everything works when I define instead $$ \mathcal{L}_{v_s} \omega:= \frac{\mathrm d }{\mathrm d t} (\rho_{s,t})^*\omega\big|_{t=s} $$
where $\rho_{s,t}$ satisfies $$ \frac{\mathrm d \rho_{s,t}}{\mathrm d t} = v_t\circ\rho_{s,t} \qquad \text{and} \qquad \rho_{s,s} = \mathrm{id}. $$
Does this make sense to you?