$$I=\int_{0}^{\frac{\pi}{2}}x \ln (1+\cos x)\,d x$$
Applying $\color{red}{\cos(x)\to x}$,
$$I=-\int_{0}^{1} \frac{\arccos(x)\ln (1+x)}{\sqrt{1-x^2}}\,d x$$
Using inverse trig relation,
$$\color{red}{\arcsin(x)+\arccos(x)=\frac{\pi}{2}\implies -\arccos(x)=\arcsin(x)-\frac{\pi}{2}}$$
Using the following expansion,
$$\color{red}{\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n \choose n}}}$$
$$I=\int_{0}^{1} \frac{\arcsin(x)\ln (1+x)}{\sqrt{1-x^2}}\,d x-\frac{\pi}2\int_{0}^{1} \frac{\ln (1+x)}{\sqrt{1-x^2}}\,d x$$
$$\int_{0}^{1} \frac{\ln (1+x)}{\sqrt{1-x^2}}\,d x=\int_0^\frac{\pi}{2} \ln(1 + \sin x) \ dx = \int_0^\frac{\pi}{2} \ln(\sec x + \tan x) \,dx+ \int_0^\frac{\pi}{2}\ln \cos x \ dx \\= -\frac{\pi \ln 2}{2} + \left[x \ln(\sec x + \tan x)\right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} x\sec x \ dx \\= - \frac{\pi \ln 2}{2} + \int_0^{\frac{\pi}{2}} \frac{x}{ \sin x} - \frac{\pi}{2} \int_0^{\frac{\pi}{2}} \csc x \ dx \\= 2G - \frac{\pi \ln 2}{2} $$
$$\frac{\pi}{2}\int_{0}^{1} \frac{\ln (1+x)}{\sqrt{1-x^2}}\,d x=\pi G - \frac{\pi^2 \ln 2}{4} $$
$$\int_{0}^{1} \frac{\arcsin(x)\ln (1+x)}{\sqrt{1-x^2}}\,d x=\frac12\sum_{n=1}^\infty\frac{(2)^{2n}}{n{2n \choose n}}\int_{0}^{1} x^{2n-1}\ln(1+x)\,d x$$
Using the below integral,
$$\int_0^1x^{2n-1}\ln(1+x)dx=\frac{H_{2n}-H_n}{2n}$$
$$\int_{0}^{1} \frac{\arcsin(x)\ln (1+x)}{\sqrt{1-x^2}}\,d x=\frac14\sum_{n=1}^\infty\frac{4^{n}H_{2n}}{n^2{2n \choose n}}-\frac14\sum_{n=1}^\infty\frac{4^{n}H_{n}}{n^2{2n \choose n}}=\frac{21}{16}\zeta(3)-\frac34\ln(2)\zeta(2)$$
Where,
$$\frac14\sum_{n=1}^\infty\frac{4^{n}H_{2n}}{n^2{2n \choose n}}=\frac{3}{4}\ln(2)\zeta(2)+\frac{35}{16}\zeta(3)$$
Partial proof is below
$$\frac14\sum_{n=1}^\infty\frac{4^{n}H_{n}}{n^2{2n \choose n}}=\frac32\ln(2)\zeta(2)+\frac{14}{16}\zeta(3)$$
Proof to above sum
$$\therefore I=\pi G-\frac{21}{16}\zeta(3)-\frac{\pi^2 }{8}\ln 2$$
Partial proof to $\sum_{n=1}^\infty \frac{4^{n}H_{2n}}{n^2{2n \choose n}}$ is below,
$$
\frac{\arcsin(x)}{\sqrt{1 - x^2}} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{4^n}{n\binom{2n}{n}} {x^{2n-1}}
$$
$$
\sum_{n=1}^\infty \frac{4^{n-1}H_{2n}}{n^2{2n \choose n}}
= \int_0^1 \frac{\arcsin (x) \ln(1 - x)}{\sqrt{1 - x^2}}\, dx
$$
Make the change $x \to \sin x$ and applying Fourier series expansion of $\ln(\sin x)$ and then standard Zeta function definition, we can finish the whole proof.