I want to evaluate
$$ \int_{-\infty}^\infty a e^{-bt^2} \cos(\omega t) dt $$
With Euler's identity
$$ \int_{-\infty}^\infty a e^{-bt^2} \cos(\omega t) dt = \int_{-\infty}^\infty a e^{-bt^2} \big\{ {{e^{i \omega t} + e^{-i \omega t}} \over 2}\big\} dt $$
$$ = \int_{-\infty}^\infty \bigg({a e^{-bt^2} e^{i \omega t} \over 2} + {a e^{-bt^2} e^{-i \omega t} \over 2}\bigg)\; dt $$
$$ = {a \over 2} \int_{-\infty}^\infty (e^{-bt^2+i \omega t} + e^{-bt^2-i \omega t})\; dt $$
$$ = {a \over 2} \bigg({e^{-bt^2+i \omega t} \over -2bt+i \omega}\bigg|_{-\infty}^\infty + {e^{-bt^2-i \omega t} \over {-2bt-i \omega}}\bigg|_{-\infty}^\infty\bigg) $$
This leads to problems with infinities.