Assume $f$ is analytic on $\left|z-1\right|<1$,$f'(z)=1/z$ and $f(1)=0$, Prove that on this region $f(z)=\text{Log}(z)$.
Since $f$ is analytic on $\left|z-1\right|<1$, so for every $z=x+iy$ in this region we have that $u_x(x,y)=v_y(x,y)$ and $u_y(x,y)=-v_x(x,y)$, on the other hand $f'(z)=1/z$ implies that $u_x(x,y)=\frac{x}{x^2+y^2}$ and $v_x(x,y)=\frac{-y}{x^2+y^2}$, So $u(x,y)=1/2 \ln(x^2+y^2)+c_1(y)$, Moreover $$\frac{y}{x^{2}+y^{2}}+c_1'\left(y\right)=\frac{y}{x^{2}+y^{2}}$$
From which we conclude that $c_1(y)=c$ $$v\left(x,y\right)=\arctan\left(\frac{y}{x}\right)+c_{2}\left(y\right)$$
$$\frac{1}{\sqrt{x^{2}+y^{2}}}+c'_{2}\left(y\right)=\frac{x}{x^{2}+y^{2}}$$
Is this the correct way to go?