I can't solve the following:
i) Let $T:l^2 \rightarrow l^2$ , $Tx=\{ (Tx)_n\}_{n=1}^{\infty}$ given by $$(Tx)_n = \dfrac{1}{2}x_{n-1} + \dfrac{1}{2}x_n.$$ Find $\sigma(T)$.
ii) Let $S : l^2 \rightarrow l^2$ defined by $l(x_1, x_2, x_3, \dots ) = (x_2, x_3, \dots )$ Find $\sigma(S)$.
iii) Let $X$ be a normed vector space and $T\colon X \rightarrow X$ linear operator such that $T^{-1}$ exists. Show that $$ \sigma(T^{-1}) = \{ \lambda^{-1} : \lambda \in \sigma (T) \}.$$ Thanks in advance.