0

I am trying to find three $R$-modules $V_{1},V_{2},V_{3}$ in $R=\mathbb{R}[x]/(x^{3}-x)$ as an $R$-algebra which have dimension 1 over $\mathbb{R}$ and $Hom_{R}(V_{i},V_{j})=\mathbb{R}$ if $i=j$, but $0$ if $i\neq j $ ?
What can we say about tensor product of $V_{i}$ and $V_{j}$ over $R$?
If we know that the $P:\mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ is projection onto a subspace of dimension 3 why does $P$ yields $R$-module structure on $\mathbb{R}^{7}$?
If we call the resulting module $M$ how can we describe the dimension over $\mathbb{R}$ of $Hom_{R}(V_{i},M)$ for all $i$.

0 Answers0