In the following question, $B$ refers to Brownian motion.
I am having a problem with a particular part of the solution of the following question (picture below). More precisely, how to prove that $$M(4^{p+1})-M(4^p) \leq |B_{4^{p+1}}-B_{4^p}|?$$
We wish to show that when $T$ is a stopping time with $\mathbb{E}\left[T^{1 / 2}\right]<\infty$, Wald's lemma still applies and $\mathbb{E}\left[B_{T}\right]=0$
(1) Define $\tau:=\min \left\{k: 4^{k} \geq T\right\}$. Set $M(t):=\max _{[0, t]} B$ and $X_{k}:=M\left(4^{k}\right)-2^{k+2}$. Show that $\left(X_{k}\right)$ is a supermartingale for the filtration $\left(\mathcal{F}_{4^{k}}\right)_{k}$, and that $\tau$ is a stopping time.
Solution (1) Define $\tau:=\min \left\{k: 4^{k} \geq T\right\}$. Set $M(t):=\max _{[0, t]} B$ and $$ \mathbb{E}\left[X_{k+1}-X_{k} \mid \mathcal{F}_{4^{k}}\right]=\mathbb{E}\left[M\left(4^{k+1}\right)-M\left(4^{k}\right) \mid \mathcal{F}_{4^{k}}\right]-4 \times 2^{k} $$ Since we know that almost surely $M\left(4^{k+1}\right)-M\left(4^{k}\right) \leq\left|B_{4^{k+1}}-B_{4^{k}}\right|$ which is independent of $\mathcal{F}_{4^{k}}$ and distributed like $\left|B_{4^{k+1}-4^{k}}\right|$, then $$ \mathbb{E}\left[X_{k+1}-X_{k} \mid \mathcal{F}_{4^{k}}\right] \leq \mathbb{E}\left[\left|B_{4^{k+1}-4^{k}}\right|\right]-4 \times 2^{k}=\sqrt{3 \times 4^{k}} \mathbb{E}\left[\left|B_{1}\right|\right]-4 \times 2^{k} $$ A simple application of Cauchy-Schwarz or Jensen gives $\mathbb{E}\left[\left|B_{1}\right|\right] \leq \sqrt{\mathbb{E}\left[\left|B_{1}\right|^{2}\right]}=1$, and the expectation above is bounded by 0 .