0

I'm struggling to show that $\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}>2$ using $\sqrt{a}\sqrt{b+c}≤\frac{a+b+c}{2}$ (which is derived from $A_m≥G_m$ for $2$).

Since there's three terms on the RHS, I tried:

$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}≥2\sqrt{\sqrt{\frac{a}{b+c}}}\sqrt{\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}}$, but the LHS looks monstrous and I couldn't simplify and show that $\sqrt{\sqrt{\frac{a}{b+c}}}\sqrt{\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}}>1$.

I then tried:

$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}=\frac{\sqrt{a(c+a)(b+a)}+\sqrt{b(c+b)(b+a)}+\sqrt{c(c+a)(b+c)}}{\sqrt{(a+b)(b+c)(c+a)}}$

$≤\frac{2\sqrt{\sqrt{a(c+a)(b+a)}}\sqrt{\sqrt{b(c+b)(b+a)}+\sqrt{c(c+a)(b+c)}}}{\sqrt{(a+b)(b+c)(c+a)}}$, but this also doesn't simplify anywhere.

Can someone help point me in the right direction?

  • 1
    Also various solutions on AoPS: https://approach0.xyz/search/?q=OR%20content%3A%24%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%2Bc%7D%7D%2B%5Csqrt%7B%5Cfrac%7Bb%7D%7Ba%2Bc%7D%7D%2B%5Csqrt%7B%5Cfrac%7Bc%7D%7Bb%2Ba%7D%7D%3E2%24%2C%20AND%20site%3Amath.stackexchange.com – Martin R Mar 09 '22 at 09:45

2 Answers2

1

Note that this is true for positive $a,b,c$ (I think you simply forgot to mention that).

Hint: try to prove that $$ \sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}. $$

richrow
  • 4,727
0

It is not true, for example for $a=0$, $b=c=1$.

Andronicus
  • 3,486