16

$\def\InvT{\operatorname{InvT}}$Introduction:

For some background information on the Dottie number D, see the great posts at:

What is the solution of $\cos(x)=x$?

Some definitions:

inverse beta regularized function $\text I^{-1}_x(a,b)$, beta regularized function $\text I_x(a,b)$, and the incomplete beta function $\text B_x(a,b)$: $$\text B_x(a,b)=\int_0^x t^{a-1} (1-t)^{b-1}dt, \text I_x(a,b)=\frac{\int_0^x t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_x(a,b)}{\text B(a,b)}$$ $$\text I_y(a,b)=x\implies y=\text I^{-1}_x(a,b);a,b>0,0\le x\le 1$$ where the restrictions on $x,a,b$ help find the quantile of a beta type distribution. There is also the Student t quantile $\InvT(x=\text{area},d=\text{degrees of freedom})$ in statistics from the Student t distribution: $$\text T(x,d)\mathop=^\text{def}\frac1{\sqrt d\text B\left(\frac d2,\frac12\right)}\int_{-\infty}^{x}\left(\frac{t^2}d+1\right)^{-\frac{d+1}2}dt=\frac12\left(1+\operatorname{sgn}(x)\text I_\frac {x^2}{x^2+d}\left(\frac d2,\frac12\right)\right)\\\text T(y,d)=x\implies y=\InvT(x,d),d>0$$ The goal is to notice that: $$\text B_x\left(\frac12,\frac32\right)=\int_0^x \sqrt{\frac 1t-1}dt=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies\text B\left(\frac12,\frac32\right)\text I_{\sin^2(x)}\left(\frac12,\frac32\right)\mathop=^{0\le x\le \frac\pi2}x+\frac12\sin(2x)$$ Therefore: $$\pi\operatorname I_{\sin^2\left(\frac x2-\frac\pi4\right)}\left(\frac12,\frac32\right)-\frac\pi2=x-\cos(x)=0\implies x=\text D=\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$ which is the inverse half covered sine. Using $\text D=\cos^{-1}(\text D)$ we get a perfect approximation with this computation. Finally, $\text I^{-1}_x\left(\frac12,b\right)$ is expressible via $\InvT(x,d)$ as in section 7 here. These give us closed forms:

The Main Result:

$$\boxed{\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\,\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)-1\right)^2}=-\tanh\left(2\tanh^{-1}\left(\frac1{\sqrt3} \InvT\left(\frac14,3\right)\right)\right)=-\frac{2\sqrt3\InvT\left(\frac14,3\right)}{\InvT^2\left(\frac14,3\right)+3}}$$ where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula. Also, $\text I^{-1}_\frac12(a,b)$ finds the median of a beta Distribution with $a,b$ as shape parameters.

Statistical Note:

Therefore we have a closed forms for the following special cases:

Median of $\frac 2\pi \sqrt{\frac 1x-1}$: enter image description here where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:

$$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$

where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the offset at which $2$ unit disks overlap by half of each’s area constant. Notice how the Dottie number appears in the offset when a unit disk is half over another one and the median, where the areas from $0$ to the median is half of the area under the curve, of a beta distribution.

$1$st quartile of $\frac{6\sqrt3}{\pi(x^2+3)^2}$: enter image description here where the 1st quartile, in $\color{red}{\text{red}}$ is the point such that $\frac14$ of the area of a curve is the red region and the other $\frac34$ is the blue region. Also, here the coversine appears:

$$1\text{st quartile}=\InvT\left(\frac14,3\right)=-\sqrt3\tanh\left(\frac12\tanh^{-1}(\text D)\right)=-\frac{\sqrt3\text{coversin}(\text D)}{\text D}= -\frac{\sqrt3\text D}{\sqrt{1-\text D^2}+1}= -0.764892328404345280657545\dots\implies\int_{-\infty}^{\InvT\left(\frac14,3\right)}\frac{dx}{(x^2+3)^2}=\frac{\pi}{24\sqrt3}$$

Power Series:

We use $\text I^{-1}_x(a,b)$’s series and Quantile Mechanics section $3.3$ to get another series expansion of the Dottie number: $$\begin{aligned}\text D=\text{hacoversin}^{-1}\sum_{n=1}^\infty a_n \left(\frac\pi8\right)^{2n} =\sqrt{1-\left(-1+2\sum_{n=1}^\infty a_n \left(\frac\pi8\right)^{2n}\right)^2}\\a_n=\frac1{(2n-1)(n-1)}\sum_{k=2}^{n-1} a_ka_{n-k+1}k(n-3k+2)+\sum_{k=1}^{n-1}\sum_{m=1}^{n-k}a_ka_ma_{n-k-m+1}k(2k-1)\\a_n=\left\{1,\frac13,\frac{11}{45},\frac{73}{315},\frac{3548}{14175},\frac{136883}{467775},\frac{15360178}{42567525},\frac{26838347}{58046625},\frac{59574521252}{97692469875},\frac{7635110149532}{9280784638125},\dots \right\}\end{aligned}$$ the Heaviside theta function from $3.3$ is unnecessary as the first sum is $0$ when $n=2$. The recurrence relation simplifies majorly from Quantile Mechanics, so possibly the double sum can become a single sum. Alternatively, the Student t quantile expresses the Dottie number and gives a series using Quantile Mechanics section $3.2$: $$\begin{aligned}\text D=- \tanh\left(2\tanh^{-1}\left(\frac1{\sqrt3} \InvT\left(\frac14,3\right)\right)\right)=-\frac{2\sqrt3\InvT\left(\frac14,3\right)}{\InvT^2\left(\frac14,3\right)+3}, \InvT\left(\frac14,3\right)= \sum_{n=0}^\infty a_n \left(\frac{\sqrt3\pi}8\right)^{2n+1}\\a_n=\frac1{3n(2n+1)}\sum_{k=0}^{n-1}\sum_{m=0}^{n-k-1}a_ka_ma_{n-k-m-1}(2(2m+1)(2n-2k-2m-1)-k(2k+1))=\left\{1,\frac29,\frac{11}{135},\frac{292}{8505},\frac{3548}{229635},\frac{273766}{37889775},\frac{15360178}{4433103675},\frac{214706776}{126947968875},\frac{59574521252}{71217810538875},\frac{15270220299064}{36534736806442875},\dots\right\}\end{aligned}$$ Both series are demonstrated here

The Question: Even though the calculations are an explanation, what is the intuition/interpretation behind the Dottie number being equal to the median of a beta distribution with half integer shape parameters or the $1$st quartile of a Student t distribution with $3$ degrees of freedom as described in the question?

Тyma Gaidash
  • 13,576
  • 4
    Please file a bug report to the Wolfram Support. Why they cannot solve Cos[x]==x? – Anixx Feb 23 '22 at 20:54
  • 6
    This is more than impressive ! I had an error $<10^{-2751}$ – Claude Leibovici Feb 28 '22 at 13:40
  • 1
    The denominators for the coefficients about which you ask appear in this paper: https://www.koreascience.or.kr/article/JAKO201105462026370.pdf – Anixx May 20 '22 at 00:53
  • 1
    Also they appear here (and there is an explicit formula, but there are more numbers than needed): https://webcache.googleusercontent.com/search?q=cache:hGvrd9lYiGEJ:https://www.ibm.com/docs/SSNR5K_5.4/reference/am6gr_dbigtb.html+&cd=1&hl=ru&ct=clnk&gl=il – Anixx May 20 '22 at 01:14
  • @Claude Leibovici this is the exact value, not an approximation. – Anixx May 20 '22 at 10:14
  • 1
    Just as a note: I've done some extensive testing and it seems that the restriction you used to simplify plugging in $\sin^2(z)$ seems to be incorrect (ie, $0\le z\le1$). I fixed this to its correct form based on what I've tested numerically (ie $0\le z\le\frac\pi2$). If I am wrong (which at least I'm decently confident I'm not wrong lol), feel free to change it back – Max0815 Jan 15 '24 at 06:36
  • Note: first power series should have parentheses around both sums times $\frac1{(2n-1)(n-1)}$ – Тyma Gaidash Apr 30 '24 at 23:29
  • There are other (simpler) recurrence relations – Тyma Gaidash Feb 19 '25 at 03:30
  • I feel like inverse T is redundant, because the definition of InvT relies on the inverse of regularized beta, so any connection there may be from Dottie to statistics would still be initially related to the beta distribution (and only then by extension t distribution), but I could be wrong ig – Max0815 Apr 24 '25 at 08:24

0 Answers0