Suppose that $f$ defined on $(a,\infty)$ is bounded on each finite interval $(a,b),a>b$. For a non-negative integer $k$, it is to be shown that $\lim_{x\to \infty} \frac{f(x+1)-f(x)}{x^k}=l\implies \lim_{x\to \infty}\frac{f(x)}{x^{k+1}}=\frac l{k+1}$
Given an $\displaystyle \epsilon >0,$there exists an integer $\displaystyle N$ such that
$$\displaystyle x \geq N \Longrightarrow \ \left| \frac{f( x+1) -f( x)}{x^{k}} -l \right| < \epsilon $$
Noting that \begin{align*} f( x) & =\sum _{i=1}^{[ x]} f( x-[ x] +i) -f( x-[ x] +i-1) +\color{red}{f( x-[ x])} \end{align*} it follows that \begin{align*} f( x) & =\sum _{i=1}^{N}\overbrace{( f( x-[ x] +i) -f( x-[ x] +i-1))}^{h( i)} +\sum _{i=N+1}^{[ x]}( f( x-[ x] +i) -f( x-[ x] +i-1)) +\color{red}{( \ )} \end{align*} It follows that
\begin{align*} |\frac{f( x)}{x^{k+1}} -\frac{l}{k+1} | & \leq \sum _{i=1}^{N} |\frac{h( i)}{x^{k+1}} -\frac{l}{[ x]( k+1)} |+\sum _{i=N+1}^{[ x]} |\frac{h( i)}{x^{k+1}} -\frac{l}{[x](k+1)} |+\color{red}{( )x^{-k-1}}\\ & \leq {\textstyle \frac{\overbrace{M}^{\sup _{1\leq i\leq N} h( i)}}{x^{k+1}} +\frac{N|l|}{[ x]( k+1)} +\frac{\epsilon ([ x] -N)}{x} +|\frac{l}{x} -\frac{l}{[ x]( k+1)} |([ x] -N) +\color{red}{\overbrace{\color{red}{\sup _{t\in [ 0,1)}f(t)}}^{M'} x^{-k-1}}}\\ & =\frac{M+M'}{x^{k+1}} +{\textstyle \frac{N|l|}{[ x]( k+1)} +\color{purple}{|\frac{l[ x]}{x} -\frac{l}{( k+1)} |} -N|\frac{l}{x} -\frac{l}{[ x]( k+1)} |+\frac{\epsilon ([ x] -N)}{x}} \tag 1 \end{align*}
In $(1)$, except the purple term every other term can be made arbitrarily small. How do I take care of the purple term so that I can conlude the desired result by limit definition.