There are two possibilities here, rotational symmetry (necklace) or
dihedral symmetry (bracelet). This is the OEIS naming convention. For the
first one we have the cycle index of the cyclic group:
$$Z(C_n) = \frac{1}{n} \sum_{d|n} \varphi(d) a_d^{n/d}.$$
For second one we have the cycle index of the dihedral group
$$Z(D_n) =
\frac{1}{2} Z(C_n) +
\begin{cases}
\frac{1}{2} a_1 a_2^{(n-1)/2} & n \text{ odd} \\
\frac{1}{4} \left( a_1^2 a_2^{n/2-1} + a_2^{n/2} \right)
& n \text{ even.}
\end{cases}$$
We get for $n=9$ the cycle indices
$$Z(C_9) = 1/9\,{a_{{1}}}^{9}+2/9\,{a_{{3}}}^{3}+2/3\,a_{{9}}$$
and
$$Z(D_9) =
1/18\,{a_{{1}}}^{9}+1/9\,{a_{{3}}}^{3}+1/3\,a_{{9}}
+1/2\,a_{{1}}{a_{{2}}}^{4}.$$
Then by the Polya Enumeration Theorem we require
$$[D^6 P^3] Z(C_9; D+P)$$
and
$$[D^6 P^3] Z(D_9; D+P).$$
We thus get for the first case
$$\frac{1}{9} {9\choose 6} + \frac{2}{9} {3\choose 2}
= 10$$
and the second one
$$\frac{1}{2} 10 + \frac{1}{2} [D^6 P^3] (D+P) (D^2+P^2)^4
\\ = 5
+ \frac{1}{2} [D^6 P^2] (D^2+P^2)^4
+ \frac{1}{2} [D^5 P^3] (D^2+P^2)^4
\\ = 5 + [D^3 P] (D+P)^4 = 5 + \frac{1}{2} {4\choose 3} = 7.$$