Solve $$\cos60=\frac{\cos(2θ)+\frac32\sin(2θ))}{\sqrt{4-\sin^2 (2θ)}},$$ where $0<θ<90^\circ $
Question: Is the following solution correct?
Solution attempt:
$$\sqrt{4-\sin^2 (2θ)}=2\cos(2θ)+3\sin(2θ)$$ $$4-\sin^2 (2θ)=(2\cos(2θ)+3\sin(2θ))^2$$
$$4-\sin^2 (2θ)=4\cos^2 (2θ)+12 \sin(2θ) \cos(2θ)+9\sin^2 (2θ)$$
$$4=4\cos^2 (2θ)+12\sin(2θ) \cos(2θ)+10\sin^2 (2θ)$$
$$4=4(1-\sin^2 (2θ) +12 \sin(2θ) \cos(2θ)+10\sin^2 (2θ)$$
$$6\sin^2 (2θ)+12 \sin(2θ) \cos(2θ)=0$$
$$\sin(2θ) (\sin(2θ)+2 \cos(2θ) )=0$$
$$\sin(2θ)=0 \text{ or } \sin(2θ)+2 \cos(2θ)=0$$
$$θ=0 \ \text{or} \ \tan(2θ)+2=0$$
$θ=0$ or $\tan^{-1} (-2)=-63.4$
$θ=0$ or $2θ=-63.4, \theta=-31.7$