Your solution is fine but you must take care that squaring introduce extra solutions.
For $x \in (0,2\pi)$, the original equation has two roots but after squaring two other appear.
In any manner, solving the quartic is possible but the result is awful (ask for the exact form).
Now, almost for the fun
By inspection, the solution is close to $x=\frac \pi 3$. What you can do is to expand
$$f(x)=\cos(x)-\sin^4(x)$$ around this value to have
$$f(x)=\sum_{n=0}^\infty a_n\,\left(x-\frac{\pi }{3}\right)^n$$ where the first coefficients are
$$\left\{-\frac{1}{16},-\frac{5 \sqrt{3}}{4},-\frac{1}{4},\frac{13}{4
\sqrt{3}},\frac{25}{48},-\frac{29}{16
\sqrt{3}},-\frac{481}{1440},\frac{2113}{3360
\sqrt{3}},\frac{1613}{16128},-\frac{6605}{48384
\sqrt{3}},\cdots\right\}$$ Truncate to some order and then use series reversion to get
$$x=\frac \pi 3-\sum_{n=1}^p b_n \,t^n\qquad \text{where} \qquad t=\frac{4 }{5 \sqrt{3}}\left(f(x)+\frac{1}{16}\right)$$ and we want $f(x)=0$.
The first $b_n$ are
$$\left\{1,\frac{1}{5 \sqrt{3}},\frac{67}{75},\frac{139}{300
\sqrt{3}},\frac{41591}{22500},\frac{294541}{225000
\sqrt{3}},\frac{38163739}{7875000},\frac{182178917}{45000000
\sqrt{3}},\frac{1921145413}{135000000},\cdots\right\}$$ Using them, an approximation is
$$x \sim \frac{\pi }{3}-\frac{1967557778378954379031}{39191040000000000000000 \sqrt{3}}=\color{red}{1.01821209908832}93$$ while the "exact" solution is
$$x=\color{red}{1.0182120990883258}$$
Edit
Using twice more terms in the expansion,
$$x \sim \frac{\pi }{3}-\frac{2295379042419019204745481645746329171766630434241}{45720787900170240000000000000000000000000000000000 \sqrt{3}}$$ showing an absolute error equal to $3.47\times 10^{-26}$.