I calculated this integral :
$$\int{x \cdot \sin^2(x) dx}$$
By parts, knowing that $\int{\sin^2(x) dx} = \frac{1}{2} \cdot x - \frac{1}{4} \cdot \sin(2x) +c$. So I can consider $\sin^2(x)$ a derivative of $\frac{1}{2} \cdot x - \frac{1}{4} \cdot \sin(2x)$, and I get this result:
$$\frac{1}{4} \cdot x^2 - \frac{x}{4} \cdot \sin(2x) + \frac{1}{4} \cdot \sin^2(x) +c$$
I get the confirm on wolfram if I try to compute the derivative of $\frac{1}{4} \cdot x^2 - \frac{x}{4} \cdot \sin(2x) + \frac{1}{4} \cdot \sin^2(x) +c$, but here if I try to compute the integral of $\int{x \cdot \sin^2(x) dx}$ I get this result:
$$\frac{x^2}{4} -\frac{1}{4} \cdot x \cdot \sin(2x) -\frac{1}{8} \cdot \cos(2x) $$
But $\frac{1}{8} \cdot \cos(2x)$ isn't equal to $\frac{1}{4} \cdot \sin^2(x)$, which is the correct result?