I'm trying to follow this argument but with a slight difference: Continuation of series using Cahen-Mellin integral.
I start with $\Phi(s)=\sum_{n=1}^\infty e^{-n^s},$ which converges iff $s>0$ is real.
Applying the Mellin inversion theorem we have that:
$$e^{\frac{1}{\ln(x)}}=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{2K_1(2\sqrt{z})}{\sqrt{z}}x^{-z}~dz$$
Where $K$ is a modified Bessel function of the second kind.
Then letting $x=e^{-n^{-s}}$ we have:
$$\Phi(s)=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{2K_1(2\sqrt{z})}{\sqrt{z}}\bigg(\sum_{n=1}^\infty e^{zn^{-s}}\bigg)~dz$$
Am I on the right track? How do I get to the solution?