Identify antipodal points on the circle:

Form the identification space:

Moving along this space, you come back to where you started... just like on a circle:

(original gifs here and here; I joined them because when they load at different times in the browser, they don't stay in sync)
This correspondence between the points of $P$ and the points of $S^1$ is a homeomorphism.
PlotUpTo[angle_, colorscale_] :=
ParametricPlot[{Cos[t], Sin[t]}, {t, 0, angle}, PlotStyle -> Thickness[0.05],
ColorFunctionScaling -> False,
ColorFunction -> Function[{x, y}, Hue[colorscale (Arg[-x - I y] + Pi)/(2 Pi )]],
PlotRange -> All, PlotRangeClipping -> False, ImageSize -> {300}, Axes -> None]
AnimatedMarker[time_, speed_] := Graphics[{PointSize[0.05],
Point[{Cos[speed 2 Pi time], Sin[speed 2 Pi time]}],
White, PointSize[0.03], Point[{Cos[speed 2 Pi time], Sin[speed 2 Pi time]}]}]
AnimatedPlot[angle_, colorscale_, time_, speed_] :=
Show[PlotUpTo[angle, colorscale], AnimatedMarker[time, speed]]
Export["animation.gif", Table[Rasterize[
TableForm[{{AnimatedPlot[Pi, 2, t, 1/2]}, {AnimatedPlot[2 Pi, 1, t, 1]}},
TableSpacing -> {10, 0}]], {t, 0, 1, 0.01}], "DisplayDurations" -> {0.04}]