3

Let $\mathcal{A}$ be a unital, commutative C*-algebra. The radical of $\mathcal{A}$ is defined as

$$\operatorname{Rad}(\mathcal{A}) = \bigcap \{\mathcal{I}\subset \mathcal{A}: \mathcal{I} \text{ is a maximal ideal}\}$$

How can one characterize $\operatorname{Rad}(\mathcal{A})$ using the Gelfand-Naimark theorem only, i.e. without referring to more evolved methods such as representation theory?

EDIT: (Gelfand-Naimark theorem)

Let $\mathcal{A}$ be a unital commutative C*-algebra. Then the Gelfand transform $\Gamma: \mathcal{A} \rightarrow C(M(\mathcal{A})), \Gamma(A)(m):=m(A)$ is a *-isomorphism.

madison54
  • 3,147

1 Answers1

3

Hint: For any space $X$ and any $x\in X$, the set of functions vanishing at $x$ is a maximal ideal in $C(X)$.

tomasz
  • 37,896