How to solve this definite integral? It cannot be solved using simple integration by parts.
$$\int_0^1 \frac{x}{1+x^2} \ln{(x+1)}\ dx$$ I encountered this in Issac Physics, so it should be solved just using high school calculus knowledge.
How to solve this definite integral? It cannot be solved using simple integration by parts.
$$\int_0^1 \frac{x}{1+x^2} \ln{(x+1)}\ dx$$ I encountered this in Issac Physics, so it should be solved just using high school calculus knowledge.
Using integration by parts, we can get $$\begin{align} \int_0^1{\frac{x}{x^2+1}\ln \left( 1+x \right) \mathrm{d}x}=&\frac{1}{2}\int_0^1{\frac{1}{x^2+1}\ln \left( 1+x \right) \mathrm{d}\left( x^2+1 \right)} \\ =&\frac{1}{2}\int_0^1{\ln \left( 1+x \right) \mathrm{d}\ln \left( x^2+1 \right)} \\ =&\frac{1}{2}\left( \ln ^22-\int_0^1{\frac{\ln \left( 1+x^2 \right)}{1+x}\mathrm{d}x} \right) \end{align}$$ And the second integral $\int_0^1{\frac{\ln \left( 1+x^2 \right)}{1+x}\mathrm{d}x}$ can be found in this cite, for example, from here we can get that $$ \int_{0}^{1}\frac{\ln(x^{2}+1)}{x+1}\mathrm{d}x=\frac{3}{4}\ln^{2}(2)-\frac{{\pi}^{2}}{48} $$ So combining them, we can get $$\begin{align} \int_0^1{\frac{x}{x^2+1}\ln \left( 1+x \right) \mathrm{d}x}=&\frac{1}{2}\left( \ln ^22-\left( \frac{3}{4}\ln ^22-\frac{\pi ^2}{48} \right) \right) \\ =&\frac{\pi ^2}{96}+\frac{1}{8}\ln ^22 \end{align}$$
No double integral or derivating parametric integral here. \begin{align}J&=\int_0^1\frac{x\ln(1+x)}{1+x^2}dx\\ K&=\int_0^1\frac{x\ln(1-x)}{1+x^2}dx\\ J+K&=\int_0^1\frac{x\ln(1-x^2)}{1+x^2}dx\\ &\overset{u=x^2}=\frac{1}{2}\int_0^1\frac{\ln(1-u)}{1+u}du\\ &\overset{z=\frac{1-u}{1+u}}=\frac12\int_0^1\frac{\ln\left(\frac{2z}{1+z}\right)}{1+z}du\\ &=\frac12\int_0^1\frac{\ln z}{1+z}dz+\frac{\ln^22}{4}\\ K-J&=\int_0^1\frac{x\ln\left(\frac{1-x}{1+x}\right)}{1+x^2}dx\\ &\overset{u=\frac{1-x}{1+x}}=\int_0^1\frac{\ln u}{1+u}du-\underbrace{\int_0^1\frac{u\ln u}{1+u^2}du}_{=z=u^2}\\ &=\frac{3}{4}\int_0^1\frac{\ln u}{1+u}du \end{align} Therefore, \begin{align}J&=\frac{1}{2}\Big(\left(J+K\right)-\left(K-J\right)\Big)=\frac{\ln^22}{8}-\frac{1}{8}\int_0^1\frac{\ln u}{1+u}du\\ &\boxed{J=\frac{\ln^22}{8}+\frac{\pi^2}{96}} \end{align} \begin{align}K&=\frac{1}{2}\Big(\left(J+K\right)+\left(K-J\right)\Big)=\frac{\ln^22}{8}+\frac{5}{8}\int_0^1\frac{\ln u}{1+u}du\\ &\boxed{K=\frac{\ln^22}{8}-\frac{5\pi^2}{96}} \end{align}
NB: I assume, \begin{align}\int_0^1\frac{\ln x}{1+x}dx=-\frac{\zeta(2)}{2}=-\frac{\pi^2}{12}\end{align}
$$\begin{align*}I=&\int_0^1{\frac{x\ln \left( 1+x \right)}{1+x^2}\mathrm{d}x}\\=&\int_0^1{\int_0^1{\frac{x^2}{\left( 1+x^2 \right) \left( 1+xt \right)}}\mathrm{d}t\mathrm{d}x}\\=&\underset{I_1}{\underbrace{\int_0^1{\int_0^1{\frac{1}{1+xt}}\mathrm{d}t\mathrm{d}x}}}-\int_0^1{\int_0^1{\frac{1}{\left( 1+x^2 \right) \left( 1+xt \right)}}\mathrm{d}t\mathrm{d}x}\\=&I_1+\underset{I_2}{\underbrace{\int_0^1{\int_0^1{\frac{tx-1}{\left( 1+x^2 \right) \left( 1+t^2 \right)}}\mathrm{d}t\mathrm{d}x}}}-\underset{I}{\underbrace{\int_0^1{\int_0^1{\frac{t^2}{\left( 1+t^2 \right) \left( 1+tx \right)}}\mathrm{d}t\mathrm{d}x}}}\end{align*}$$
Therefore $I=\frac{I_1+I_2}{2}$, where
$$\begin{align*}I_1=\int_0^1{\int_0^1{\frac{1}{1+xt}}\mathrm{d}t\mathrm{d}x}=&\int_0^1{\frac{\ln \left( 1+x \right)}{x}\mathrm{d}x}\\=&\int_0^1{\frac{1}{x}\sum_{n=1}^{+\infty}{-\frac{\left( -x \right) ^n}{n}}}\mathrm{d}x\\=&\sum_{n=0}^{+\infty}{\frac{\left( -1 \right) ^n}{n+1}\int_0^1{x^n\mathrm{d}x}}\\=&\sum_{n=0}^{+\infty}{\frac{\left( -1 \right) ^n}{\left( n+1 \right) ^2}}=\frac{\pi ^2}{6}\left( 1-2\cdot \frac{1}{4} \right) \\=&\frac{\pi ^2}{12}\end{align*}$$
and
$$\begin{align*}I_2=&\int_0^1{\int_0^1{\frac{tx-1}{\left( 1+x^2 \right) \left( 1+t^2 \right)}}\mathrm{d}t\mathrm{d}x}\\=&\int_0^1{\int_0^1{\frac{tx}{\left( 1+x^2 \right) \left( 1+t^2 \right)}}\mathrm{d}t\mathrm{d}x}-\int_0^1{\int_0^1{\frac{1}{\left( 1+x^2 \right) \left( 1+t^2 \right)}}\mathrm{d}t\mathrm{d}x}\\=&\left( \int_0^1{\frac{t}{1+t^2}}\mathrm{d}t \right) ^2-\left( \int_0^1{\frac{1}{1+t^2}}\mathrm{d}t \right) ^2\\=&\left( \frac{\ln 2}{2} \right) ^2-\left( \frac{\pi}{4} \right) ^2\end{align*}$$ Finally $$\begin{align*}\therefore I=&\frac{1}{2}\left( \frac{\pi ^2}{12}+\left( \frac{\ln 2}{2} \right) ^2-\left( \frac{\pi}{4} \right) ^2 \right) \\=&\frac{\pi ^2}{96}+\frac{\ln ^22}{8}\end{align*}$$
\begin{align} I=&\int_0^1 \frac{x \ln{(x+1)}}{1+x^2}\ dx =\int_0^1 \int_0^1 \frac{x^2}{(1+x^2)(1+x y)}dy\ dx\\ =& -I+\int_0^1 \frac{\ln(1+y)}y+\frac{2y\ln2-\pi }{4(1+y^2)}\ dy =\frac{1}{8}\ln ^22+ \frac{\pi ^2}{96} \end{align} where $\int_0^1 \frac{\ln(1+y)}ydy =\frac{\pi^2}{12}$.