$(X, d) $ be a metric space.
$a\in X, r>0$
$$B(a, r) =\{x\in X : d(a, x) <r \}$$
$$B[a, r]=\{x \in X : d(a, x) \le r \}$$
$\overline{B(a,r)}=Closure[B(a,r)]$
Question : When closure of an open ball $B(a, r)$ is the closed ball $B(a, r) $?
- $B(a, r) \subset B[a, r]$
And $\overline {B(a, r) } $ is the smallest closed set containing $B(a, r) $ .
Hence, $\overline {B(a, r) } \subseteq B[a, r]$
Now,the question is when $B[a, r]\subseteq \overline {B(a, r) }$?
- In general in a metric space the above set inclusion may not be true.
Example: $(X, d) $ be a discrete space with $\text{ } card(X) \ge 2$.
Then, $\overline{B(a, 1)} =\overline{ \{a\}}=\{a\}\neq X =B[a, 1]$
- $(X, ||•||) $ be a normed space then $\overline {B(0, 1)} =B[0, 1]$
Proof: It is enough to show $B[0, 1]\subseteq \overline {B(0, 1)}$
Let, $x\in B[0, 1] $ to show $x \in \overline {B(0, 1)}$
Choose a scalar sequence $ \lambda _n = \frac{n}{n+1}$
And set, $x_n = (\lambda_n) x$
Then, $||x_n||=|\lambda_n |•||x||<1$
And $(\lambda_n x )$ converges to $ x$ in $(X,||•||)$ [as $\lambda_n \to 1$]
Hence, we proved the existence of a sequence $(x_n)_{n\in {\mathbb{N}} }\subset B(0,1)$ such that $(x_n) \to x$ implies $x\in \overline {B(0, 1)}$.
Hence,$\overline {B(0, 1)}=B[0, 1]$
Question:
Is there any metric space $(X, d)$ other than the particular class normed space where $\overline {B(x, r)}=B[x, r]$ for all $x\in X, r>0$ ?
Thanks. Forgive me for any mistake.