Let $E_n = C_{[-n,n]}^\infty(\mathbb R)$ with the topology generated by the sets $$ \Gamma_n = \{q_{C^k, [-n,n]}|_{E_n}\} $$ of (restrictions of) seminorms $$ q_{C^k, L} : C^\infty_{c}(\mathbb R) \to [0,\infty[,\ f\mapsto\max\{\|f|_L\|_\infty, \|f'|_L\|_\infty,\ldots, \|f^{(k)}|_L\|_\infty\} $$ for $k\in\mathbb N_0$ and $L\subseteq \mathbb R$ compact.
We will now look at two sets of seminorms on $E = \bigcup_{n\in\mathbb N} E_n$
$$ \Gamma_1 = \{q\colon E \to [0,\infty[ \ \ \text{seminorm} : (\forall n\in\mathbb N)\ q|_{E_n} \text{is continuous}\},\\ \Gamma_2 = \{q_{C^k, L} : k\in\mathbb N_0,\ L\subseteq \mathbb R \ \ \text{compact}\}. $$
Note that $\Gamma_1$ induces the topology $\ \mathcal O_1$ on $E = \varinjlim E_n$ as a direct limit of locally convex spaces. We denote the topology on $E$ generated by $\Gamma_2$ by $\mathcal O_2$. Is is true that $\mathcal O_1 = \mathcal O_2$?