If I have a factor inside a series that is bounded $\forall n \in \mathbb{R}$ (but this should apply also if it is definitely bounded, so for $n \to +\infty$) can I just study the convergence/divergence of the series without the factor?
For example, if I have to study the absolute convergence of the series $$ \sum_{n=1}^{\infty}\sin\left(\frac{1}{x^\alpha}\right)(\sqrt[n]{n} - \sqrt[n+1]{n}) \text{, } \alpha \in \mathbb{R} $$ I can just say that $\left|\sin\left(\frac{1}{x^\alpha}\right)\right|$ is bounded to $[0,1]$ and so $$ \sum_{n=1}^{\infty}\left|\sin\left(\frac{1}{x^\alpha}\right)\right|(\sqrt[n]{n} - \sqrt[n+1]{n}) < \sum_{n=1}^{\infty}\sqrt[n]{n} - \sqrt[n+1]{n} $$ but can I do the same for $ \sum_{n=1}^{\infty}\left(1 - \cos\left(\frac{1}{x^\alpha}\right)\right)(\sqrt[n]{n} - \sqrt[n+1]{n})$? Because $1 - \cos\left(\frac{1}{x^\alpha}\right)$ is bounded to $[0,2]$ instead!
One way I could motivate this is $$ \sum_{n=1}^{\infty}\left(1 - \cos\left(\frac{1}{x^\alpha}\right)\right)(\sqrt[n]{n} - \sqrt[n+1]{n}) \text{ converges} \iff \sum_{n=1}^{\infty}\frac{1 - \cos\left(\frac{1}{x^\alpha}\right)}{2}(\sqrt[n]{n} - \sqrt[n+1]{n}) \text{ converges} $$ now $\frac{1 - \cos\left(\frac{1}{x^\alpha}\right)}{2}$ is bounded to $[0,1]$, so I can say that $$ \sum_{n=1}^{\infty}\frac{1 - \cos\left(\frac{1}{x^\alpha}\right)}{2}(\sqrt[n]{n} - \sqrt[n+1]{n}) < \sum_{n=1}^{\infty}\sqrt[n]{n} - \sqrt[n+1]{n} $$ but is this a consistent method?